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Abstract—Three kinds of boundary element approaches for an unsteady flow problem of incom-
pressible viscous fluid are presented. The first approach which is the so-called boundary-domain-
type is based on the use of fundamental solution for the only linear differential operator and the
Newton—-Raphson iterative procedure. The second one is based on the time splitting technique of
the governing equations in which the fundamental equations are split into the convection equation
and the Stokes equations. The third one is based on the well-known fractional step (FS) method
which is one of the time splitting techniques. In order to show the applicability and effectiveness of
our approaches, numerical results of the driven cavity flow example are demonstrated through a
comparison with other numerical results.

1. INTRODUCTION

A development of efficient computational scheme for unsteady-state viscous fluid flows
becomes important in a field of numerical fluid dynamics. Numerical simulations of the
viscous fluid flows which are governed by the Navier—Stokes equations have been performed
by many researchers using the finite difference method (see Roache, 1972; Peyret and
Taylor, 1983) or the finite element method (see Thomasset, 1981 ; Pironneau, 1989). In
addition to the two numerical methods, the boundary element method has been successfully
applied to potential problems and solid mechanics problems (see Banerjee and Butterfield,
1981 ; Brebbia et al., 1984). Applications of the boundary element method to fluid mechanics
involving nonlinear problems have been increasingly developed (see Banerjee and Morino,
1990).

There are some integral equation formulations to incompressible viscous fluid flow
problems. Wu and his co-workers (Wu and Thompson, 1973 ; Wu and Wahbah, 1976;
Wu, 1982) presented the numerical solution procedure based on the integral equation
representation using the velocity and vorticity as field variables and called the integro-
differential method. An integral equation approach in terms of the vorticity and stream
function was developed by Onishi et al. (1984). They presented suitable boundary element
procedures for the solution of the vorticity transport equation and the Poisson’s equation
which relates the stream function to the vorticity. There are some advantages in using this
approach of the incompressible Navier—Stokes equations for two-dimensional problems.
However, this approach is not generally extensible because the treatment of boundary
conditions is not only indirect but also unapplicable to three-dimensional problems. Kakuda
and Tosaka (1984) proposed the boundary element approach by reformulating the unsteady
Navier-Stokes equations in terms of the only velocity components based on the well-known
penalty function method (see Hughes et al., 1979). Unfortunately, it is not clear how to
determine the penalty parameter. Skerget ez al. (1984, 1985) solved the steady laminar flow
problems using the vorticity-velocity formulation.

On the other hand, the integral equation approaches based on the so-called primitive
variable formulation which adopts the velocity vector and the pressure as field variables
have also been proposed by many researchers. This one is the effective formulation because
the treatment of boundary conditions is not only direct but also easily extensible to three-
dimensional problems. Investigations using this approach can be found, among others, in
Oseen (1927), Ladyzhenskaya (1963), Bush and Tanner (1983), Tosaka and Onishi (1985,
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1986a), Tosaka et al. (1985), Piva et al. (1986, 1988), Hebeker (1986), and Dargush and
Banerjee (19914, 1991b).

Tosaka presented the new integral equation formulations for incompressible viscous
flows (Tosaka, 1986, 1989), laminar natural convection problems (Tosaka, 1986 ; Tosaka
and Onishi, 1986b; Tosaka and Fukushima, 1986, 1988) and non-Newtonian fluid flow
problem (Tosaka and Kakuda, 1990). This approach based on the above formulation has
been effectively applied to analyses of steady viscous flow problems (Tosaka and Kakuda,
1986a) and unsteady viscous flow problems (Tosaka and Kakuda, 1986b, 1988a), and was
called the boundary-domain-type integral equation method. The integral equations derived
from this method were discretized by not only boundary elements but also internal elements.
The final system of equations with a full coefficient matrix was solved effectively by using
the Newton—Raphson iterative procedure. However, this scheme needs too much com-
putational time and large main memory size in comparison with the finite difference scheme
or the finite element scheme.

To overcome this shortcoming, we developed a new approach which was based on the
boundary integral equation formulation by making use of the fundamental solution on
each subdomain in the whole domain of the problem, and called the generalized boundary
element method (Tosaka and Kakuda, 1988b; Kakuda and Tosaka, 1990a). This method
has an advantage that some nonlinear effects are taken into consideration in the fundamental
solution for the problem. The final system of equations which involves a sparse coefficient
matrix was solved implicitly by using a simple iterative procedure.

Moreover, two approaches by means of the boundary elements based on the time
splitting technique, which has been successfully developed in the "nite element framework
(see Benque et al., 1980 ; Donea et al., 1982), have been proposed by Kakuda and Tosaka
(1990b, 1990¢). The one is based on the scheme of Benque er al. (1980). The fundamental
equations were split into the convection equation and the Stokes equations. The non-linear
convection equation could be solved implicitly by using a simple iterative procedure. The
obtained convection solutions were also used as the initial velocity to solve the Stokes
equations using the boundary element method. The other is based on the FS method. In
this approach, we adopted the Navier-Stokes equations written in rotational form as the
convection term (see Tanahashi et al., 1990). The fundamental equations were split into
the convection-diffusion-type equation and linear Euler-type equations. The generalized
boundary element method was applied to solve the convection-diffusion-type equation and
the Poisson’s equation which relates a scalar potential to an auxiliary velocity vector.

In the present chapter, the above mentioned three approaches to solve the unsteady
Navier-Stokes equations governing an incompressible viscous fluid flow are presented
compactly. These approaches are the boundary-domain-type integral equation formulation,
the boundary element one based on Benque’s scheme and the generalized boundary element
one based on FS scheme. In Section 2 the problem statement is given. The integral equation
formulations for three approaches are presented in Section 3. Numerical examples for the
driven cavity flow and conclusions are presented in Sections 4 and S, respectively.

Throughout this chapter, the summation convection on repeated indices is employed.
A comma following a variable is used to denote partial differentiation with respect to a
space variable, and a dot over a variable denotes differentiation with respect to time.

2. STATEMENT OF PROBLEMS

Let Q be a bounded domain in Euclidean space with a piecewise smooth boundary I'.
The unit outward normal vector to I is denoted by n,. Also, 7 = (0, T) denotes a closed

time interval.,
The unsteady flow of an incompressible viscous fluid is governed by the following
Navier-Stokes equations and continuity equation in dimensionless form:

Navier-Stokes equations,

1 .
Wty = —p;+ Re (u ;+u,;) imJ xQ, H
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continuity equation,
u; =0 inJ xQ, )
where u; is the velocity vector, p is the pressure, and Re is the Reynolds number.

In addition to the above set of equations, the following initial and boundary conditions
are prescribed :

initial condition,

1;(x,0) =u’ inQ, ?3)

boundary conditions,
u(x,t)=u; onJ xI,, C))
1(x,t) =1, onJ xI,, (5)

where u; denotes the given initial velocity, «, is the velocity vector prescribed on the velocity
boundary I',,, and 7; is the traction vector prescribed on the traction boundary I..

3. INTEGRAL EQUATION FORMULATIONS

In this section, we shall consider three kinds of integral equation approaches cor-
responding to the initial-boundary value problems. The first approach is based on the
boundary-domain-type integral equation method which is a systematic and useful one
presented in Tosaka and Onishi (1985, 1986a). The second one is the derivation of the
boundary element equation based on the time splitting technique which is proposed by
Benque et al. (1980). The third one is the boundary element formulation based on the FS
method.

3.1. Boundary-domain integral equation formulation (approach 1)

3.1.1. Problem formulation. In this approach, the differential equations (1) and (2) can
be written in matrix form as follows:

L,U,= B, (6)

where [L,;] is the matrix of the linear differential operators appearing in eqns (1) and (2),

{U,} is the unknown vector and {B;} denotes the forcing vector given by the nonlinear
convection term. The explicit form of eqn (6) is given by Tosaka and Onishi (1986a).

3.1.2. Integral equation. In order to derive the integral representation for eqn (6), we

start with the following integral identity over the spatial and temporal domain for the
weighting function V¥

J J‘ (L,JUJ_B[)VI*K dQ dt = 0. (7)
T JQ

Integrating by parts over the domain and the time interval, and after some manipulations,
we obtain the following set of integral equations:

CLI((.V) UK(y’s) = .[f J;ui(xs I)Zi‘l(‘(x,t;ya S) dr(X) dt—J;_ J;Ti(xs t) Vii(x, t; ys S) dF(x) dt

—L Reu;(x,0)VE(x,0;y,s) dQ(x) +L LB,(x, DV(x,t;y,5)dQ(x)ds, (8)

SAS 31:12/13-0
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where C,x(y) denotes the shape coefficient tensor which depends generally on both the
location of a field point x and the local geometry at the source point y. And also, V¥ and
X} are the time-dependent fundamental solution tensor which is presented explicitly in
Tosaka and Onishi (1986a) by using Hormander’s method (H6rmander, 1964).

3.1.3. Discretization and solution procedure. We consider a discretization by the space-
time elements. Let us assume that the boundary I is subdivided into n elements and the
domain Q is discretized into m cells. The time interval . is also subdivided into breaks
o1 =L+At(k=0,1,2,...; Atis the time increment).

The unknowns u{(x, t) and 7,(x, ¢) over each element and each time step can be
approximated by using the set of interpolation functions as follows:

On the boundary element,

u(x, 1) = Yo(t)Pn(x)u(xy, tg)} )
Ti(x, 1) = Yo()Ppap(x)Tti(xn, 1) §

In the interior cell,
ui(x, 1) = Yo ()Qu(X)u;(xp, to), (10)

in which ¢,(x) and ¢, (x) denote the interpolation functions defined on boundary element
and interior cell, respectively, and y,(¢) is the one defined on each time step. The indices
N, M and Q refer to the number of nodes within each element, the one of nodes within
each cell and the one of time element, respectively.

Substituting of eqns (9) and (10) into (8), we obtain the following discrete form :

Asjrotiro + GungTing = Hunotting — Ciimotime + Ninojxi imoUixL» (11)

where the shape coefficient matrix A, is taken to be

C;;0r(x)yo(t) for a point on the boundary, 1
URQ ) §,pp(X)o(z)  for a point inside, (12)
in which §,; denotes the Kronecker’s delta, and the other coefficients are given by :
Givg = ). r¢N(x)J Vix, 159, 9 o(1) dr dT'(x),
p=1 4y i
Hywg = ), quN(JC)J~ TH(x, 159, 8)Wo(r) dr dT'(x),
p=14J,0 T L
m o[ (13)
Cimo = ). . Rep u(x)VE(x,0; p, s)¥(0) dQ(x),
£=1 Y7
m r‘ L
Nimojkr = Z Re(PM(x)(PK.j(x)J‘ VI, 5y, W)y (2) dt dQ(x).
= Q N

f=1 ¥/
Here, we adopt a constant element (i.e., Y5(z) = 1) on a time variable within each time
step for the unknowns.

Applying eqn (11) to all boundary nodes and interior ones, we finally obtain the
following matrix form:

Huk+1 = Gt"+‘+Cu"-—N(u"+’)u"*’, (14)
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where u**! and "' are the nodal velocity vector and the nodal traction vector at the
(k + 1)-th time step, respectively, H and G are the so-called influence matrices, and N(u** ")
denotes a nonlinear mapping defined with the convection terms.

After applying boundary conditions and initial condition to eqn (14), the equation can
be rewritten in the following final form:

A@X =B (15)
where A(u) is the system matrix which depends on the unknown vector u, X is the vector
of nodal unknown values on the boundary and interior domain, and B is the known vector.

Since the final system (15) is nonlinear, we must make use of some iterative procedure
in order to solve the equation at each time step. To solve eqn (15) accurately and in a stable
manner for high Reynolds numbers, we have found that it is effective to utilise the well-
known Newton—Raphson method (Tosaka and Kakuda, 1986a, 1986b). Moreover, it is

powerful to employ the time-marching scheme (see Brebbia et al., 1984).
The convergence criterion employed herein is given by

R <
IRX) <& }’ 16)

R(X) = AWX—-B

wherg || J denotes the Euclidean norm and ¢ is some small positive number.

3.2. Boundary element formulation based on Benque’s scheme (approach 2)

3.2.1. Problem formulation. By applying the time splitting technique (Benque et al.,
1980) to eqns (1) and (2), we can split the problem into the following two parts:

(a) convection problem
U+ai; =0 in 7 xQ, an

(b) Stokes problem

1
U= —pi+— (W ;;+u,)
Re ™7 70 in 7 xQ, (18)
u,",‘ = O

where #; denotes the auxiliary velocity vector.

3.2.2. Integral equation. We describe the integral representations for eqns (17) and
(18). The convection equation (17) is solved via the method of characteristics as follows :

ﬂ,-(xj,th.‘) = ﬁi(Xj—ﬁjAt, tk)' (19)

On the other hand, we apply the boundary element method to solve the Stokes
equations (18). The resulting boundary integral equations can be derived as follows (Tosaka
and Onishi, 1986a ; Tosaka, 1989):

Cox(MNUk(y,s) = J fru;(x, DXL (x,t;y,5)dI'(x) dt

- J\ J;Ti(x’ t) Vi*[:,(x’ ! Vs S) dr(x) dt_ J\ Reui(xs tk) V;.;,(x’ tk 3 Vs S) dQ(x)' (20)
1 Q
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3.2.3. Discretization and solution procedure. Taking into consideration the space-time
discretization and substituting the approximate forms of eqns (9) and (10) into eqn (20),
we obtain the following matrix form:

Hu‘*' = Gt*+ '+ Cu. 2hH

Let us mention briefly the solution procedure for this approach. First, we determine
the velocity vector (19) by using both a simple iterative procedure and an interpolation
with the cubic spline. The convection solutions obtained can be used as an initial velocity
to solve eqn (21) step-by-step.

3.3. Boundary element formulation based on FS scheme (approach 3)

3.3.1. Problem formulation. Now, we adopt the Navier-Stokes equations written in
rotational form as the convection term of eqn (1) (see Tanahashi et al., 1990). By applying
the semi-implicit scheme to time derivative of the derived equations, the governing equations
are given as follows:
ut —uf

1
A —ejuof = ~H '+ —uf, inQ, (22)

Re
W' =0 inQ (23)

where e;; is the Eddington’s epsilon, of (= e j,uf ;) is the vorticity vector at kth time step,
and H**!is the Bernoulli’s function defined by :
ui uf

HEHL = ket
ot

24

Making use of the auxiliary vector #;, and applying the fractional step scheme to eqns (22)
and (23), we obtain the following two parts of problem:

(a) convection—diffusion-type problem
i, —ut

1

Re 7P

(b) linear Euler-type problem

u;‘+] li,——AIH{‘,-+l
. (26)

k+1
Ui

Here, taking the rotation of the first equation in (26) and making use of the Helmholtz
resolution, we obtain the following equation :

wt =a+0, 27

in which @ is the scalar potential. Moreover, taking the divergence of eqn (27) and taking
into consideration the continuity equation in (26), we obtain the following Poisson equation
in terms of @:

(D.fi = “ﬁi,i~ (28)



Convective viscous flow problems 1853
Substituting eqn (27) into (26), we can derive the relation between H**' and ® as follows::

1
k+ 1
H ' = —Attb. (29)

3.3.2. Integral equations. In this stage, we describe the integral representations for
egns (25) and (28). In order to achieve the integral equation formulation of eqn (25), we
start with the integral identity in a subdomain Q, of the whole domain Q as follows :

i1, — Uy S *
X A Cath wf — —R;ua.ji 0,0* dQ =0, (30)

in which ¢* is the arbitrary scalar function. Integrating by parts over the subdomain, we
can rewrite eqn (30) as

1, * i —u k kY %
X Eui(bdjdﬂ: N Al —euiw; |¢* dQ

1. 1 .
—J;e Reui‘jnj¢ drr+ j;_ Reuf-‘q&_,-nj dar. (3n

Here, the scalar function ¢* can be chosen as a fundamental solution which satisfies the
following differential equation:

oY = —d(x—y), (32)

where J(x — y) is the Dirac delta function with the pole at x = y. The fundamental solutions
are given as follows:

1
O*(x,y) = — Eln r (for two-dimensional case), (33)
and
1 . .
o*(x,y) = o (for three-dimensional case). (34)

Substituting eqn (32) into (31), we derive the following integral representation :

1 o
C(y)ﬁuf-‘(y) = —L (u’ ' —eiﬂu,’-‘wf‘> * dQ

At
1 k * 1 K bk
+ r Reu,-‘jnj(ﬁ dr— - Reu,’ ,jnjdr‘. (35)

If we suppose that the vorticity vector is piecewise constant in a subdomain, then the
weighted residual integral is expressed as

1
wf =g L e;znuf dr, (36)

in which 0 takes the area of Q, and the volume of Q, for the two-dimensional case and
three-dimensional case, respectively.
On the other hand, we apply the boundary element method in a subdomain €, to solve
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the Poisson equation (28). The solution ® has the following integral representation with
the fundamental solution (33) or (34):

c(NP(y) = —L Y dQ+ J; an,0* dTr + L © ¥ dl'— j ®p*n,dl. (37)
, . o T,

3.3.3. Discretization and solution procedure. By applying the boundary element dis-
cretization in subdomain to eqn (35), we obtain the following local matrix form

=Gt — Ha* + AL (38)

Caallit e BN Kk, Xk
v ok~ Houf+ A, (39)
where ,M(=,G~',M) is the lumped mass matrix.

Taking into consideration the equilibrium conditions of ,u, on each subdomain and

setting up eqn (39) for all subdomains, we can obtain the final system of equations as
follows :

U =U"+AID"'F, (40)

where D is the diagonal coefficient matrix and F* denotes the known vector which consists
of the velocity and vorticity at the Ath time step.
On the other hand, the boundary element discretization of eqn (37) is given as follows:

L’Hed) = UGL’(D‘" +L‘Q(’ﬁk' (41)
Setting up eqn (41) for all subdomains, the final system of equations is obtained as follows:

S® =F, (42)

where S is the sparse coefficient matrix and F denotes the known vector with respect to the
auxiliary vector U.
The solution procedure of this approach is given as follows:

1K_ ur=1l, uy=0
o [l
i ]
o~ o~
3 =
[ 1
. 5
uj =u2 =(Q
e 1 o

Fig. 1. Driven cavity flow model.
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1. Give an initial velocity vector of U* and calculate explicitly the auxiliary vector U
by eqn (40).

2. Solve the solution ® by applying SOR method to eqn (42).

3. Calculate U**'and H**'at (k+ 1)th time step from the weighted residual statement
of eqns (27) and (29), respectively, and go to L.

4. NUMERICAL EXAMPLES

In order to show the effectiveness and adaptability of three approaches, we demonstrate
a recirculation flow in a square cavity driven by a lid sliding at a uniform velocity. The
motion of the fluid reaches a steady state gradually.

The geometry and boundary conditions are shown in Fig. 1. The nonuniform element
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Fig. 2. Velocity vector fields at Re = 102.
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Fig. 4. Comparison of horizontal velocity profiles along vertical centreline (Re = 10°). Present

{O approach 1, 23 by 25 nodes; A approach 2, 21 x21; W approach 3, 25 x 25); [J Ghia ef al.

(129 by 129 uniform mesh: FDM): x x x Burggraf (40 by 40 uniform: FDM): Thomasset

(408 elements; FEM); --- Bercovier and Engelman (@,+{, FEM with penalizatio; 12x12);
--- Borrel (w—yP,+P, FEM; 10x 10).

which becomes fine near the boundary is utilized. In our numerical performance we adopt
the lowest interpolation functions in which the velocity, the traction and the scalar potential
are piecewise linear and the pressure, the Bernoulli’s function and the vorticity are constant
over each element. In the approaches 1 and 2, the constant time element is also adopted.
Moreover, the initial velocities are assumed to be zero everywhere in the interior domain.

We show the numerical solutions for Re = 10% and 10°. The velocity vector fields for
Re = 10? and 10° are shown in Figs 2 and 3, respectively. In Figs 4 and 5, we show the
steady horizontal velocity profiles along a vertical centreline inside a cavity, and we compare
our results at t = 5.0 for Re = 10%and ¢ = 40.0 for Re = 10° with those obtained by various
authors quoted by Thomasset (1981) and Ghia ef al. (1982). Results for Re = 10? are in
good agreement with those obtained by using different numerical methods. In the case of
Re = 10°, the agreement between the results by using approach 2 based on the Benque’s
scheme and the other ones does not appear satisfactory, but the results using the approaches
1 and 3 are generally comparable to those of Ghia er al. (1982).

5. CONCLUSIONS

We have presented three approaches based on the integral equation formulations for
the incompressible viscous fiow problems. These approaches are the boundary-domain-
type integral equation formulation, the boundary element one based on Benque’s scheme
and the generalized boundary element one based on the FS scheme. The final system of
equations derived from the first approach was solved effectively by using the Newton-
Raphson iterative procedure at each time step. On the other hand, in both second and third
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l g

Fig. 5. Comparison of horizontal velocity profiles along vertical centreline {Re = 10%). Present

(O approach 1, 21 by 23 nodes; A approach 2, 31 x31; W approach 3, 33x33); @ Ghia et al.

(129 by 129 uniform mesh ; FDM) ; —— Nallasamy and Krishaia-Prasad (upwind FDM ; 50 x 50) ;

--- Benazeth (mixed w—yQ@,+Q;, full upwinding FEM; 10x 10); -.- Fortin and Thomasset

(Q,+Qelements; 12 x 12); - - - Bercovier and Engelman (Q,+ Q, FEM with penalizatio; 12 x 12) ;
+ + + Figueroa (mixed "y —y,,” FEM, with full upwinding; 12 x 12).

approaches the time splitting techniques were introduced and we also applied the simple
iterative procedures to solve the final system of equations. Especially, the second approach
based on Benque’s scheme is unconditionally stable.

Numerical results for the driven cavity flow in two dimensions demonstrated the
applicability and effectiveness of the three approaches through a comparison with the other
existing results. These approaches can be also extended to three-dimensional problems.
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